Course Category	ТВА	Credits	2
Subject Code	ТВА	Taking Year	1 st Grade, 2 nd Grade
Course Title (Japanese)	力学系とエルゴード理論	Course Period	2 nd Semester
Course Title	Dynamical Systems and Ergodic Theory	Day of the week / Hour	Friday / The third period
Registration Code	ТВА	Compulsory / Elective	Elective
Instructor(s)	Johannes Jaerisch	Course Qualification	Students of Postgraduate Mathematics Course

Course Style	Lecture		
Course Aim	Dynamical systems is the study of the long-term behavior of systems whose state evolves with time. We focus on chaotic dynamical systems which are highly sensitive to the initial conditions originating from celestial mechanics at the end of the 19 th century. The ergodic theory studies the average behavior of a dynamical system with respect to a measure.		
Goals and Objectives (Level of Achievement)	This is an introductory course on topological and measure-theoretic aspects (that is, ergodic theory) of chaotic dynamical systems. Topics in topological dynamics include chaotic dynamical systems (e.g., expanding maps, hyperbolic toral automorphisms, shift spaces), complexity and periodic points, points with dense orbits, minimality and almost-periodicity. Topics in ergodic theory include the concept of measure preserving transformations, ergodicity, character theory, Birkhoff's ergodic theorem and induced transformations.		
Course Plan	 Circle rotations Expanding maps on the circle Hyperbolic toral automorphisms Symbolic dynamics of topological Markov chains Perron-Frobenius theorem Counting periodic points and the dynamical zeta function Minimality and topological transitivity Almost periodicity Measure-preserving dynamical systems Poincaré-recurrence theorem Character theory Birkhoff's Ergodic theorem and its proof Birkhoff's Ergodic theorem and its applications Induced transformations and Kakutani's skyscrapers Summary and outlook 		
Teaching Methods	There will be homework assignments in class.		
Key Words	Dynamical systems, Ergodic theory, Chaos, Butterfly effect, Markov chains.		
Texts	 [1] Brin, M., Stuck, G.: Introduction to Dynamical Systems, Cambridge Univ. Press, 2002. [2] Walters, P.: An introduction to Ergodic Theory, vol. 79, New York, Springer, 1982. [3] Hasselblatt, B., Katok, A.: A First Course in Dynamics - with a Panorama of Recent Developments, 2003. 		
Reference Books	 [1] Petersen, K., Ergodic theory, Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press, Cambridge, 1983. [2] Barreira, Luis and Valls Claudia. Dynamical systems. Universitext, 2013. 		
Other Teaching Materials	Further references and materials will be given in class.		
Performance Evaluation	Evaluation is based up on homework assignments and class attendance.		
Notes on the Course	It is strongly recommended to work on the homework assignments.		
Office Hour	ТВА		
Other Notes	None		