Course Category	ТВА	Credits	2
Subject Code	ТВА	Taking Year	1 st Grade, 2 nd Grade
Course Title (Japanese)	数值近似法	Course Period	1 st Semester
Course Title	Numerical Approximation Methods	Day of the week / Hour	Wednesday / The fifth period
Registration Code	ТВА	Compulsory / Elective	Elective
Instructor(s)	Daishi Kuroiwa Satoshi Suzuki	Course Qualification	Students of Postgraduate Mathematics Course

Course Style	Lecture		
	There are a lot of problems which can not be solved analytically in the real world.		
Course Aim	In this lecture, we study the munerical methods and theory for approximation		
	such solutions.		
Goals and Objectives (Level of Achievement)	1. To understand basic notions in numerical approximation methods		
	To understand ideas of numerical approximation methods		
	3. To understand theorems and its proofs in numerical approximation methods		
Course Plan	1. Introduction		
	2. Basic functional analysis		
	3. Spaces and norms		
	4. Best approximation		
	5. Inner products		
	6. Orthogonal system		
	7. Fourier approximation		
	8. Various examples		
	9. Weierstrass approximation theorem		
	10. Bernstein polynomials		
	12. Linear internelation		
	12. Enterin Interpolation		
	14 Spline interpolation		
	15 Bezier interpolation		
Teaching Methods	Homeworks will be given during the course		
KovWords	Numerical analysis. Eurotional analysis		
Toxto	Numerical analysis, Functional analysis		
Reference Books	Io be introduced in the class when necessary		
Other Teaching Materials	To be given in the class when necessary		
Performance Evaluation	To be decided by reports and examinations		
Notes on the Course	Review the previous lecture if you could not understand.		
Office Hour	To be announced		
Other Notes	None		