Course Category	TBA	Credits	2
Subject Code	TBA	Taking Year	$1^{\text {st }}$ Grade， $2^{\text {nd }}$ Grade
Course Title（Japanese）	微分位相幾何学	Course Period	$1^{1^{\text {st }} \text { Semester }}$
Course Title	Differential Topology	Day of the week／ Hour	Friday／ The second period
Registration Code	TBA	Compulsory／ Elective	Elective
Instructor（s）	Tadayuki Watanabe Eiichi Matsuhashi	Course Qualification	Students of Postgraduate Mathematics Course

Course Style	Lecture		
Course Aim			The aim of this class is to understand basic concepts from differential topology． We focus on a Morse theoretic approach to differentiable manifolds and apply it to study differential structures on manifolds．
Goals and Objectives （Level of Achievement）	Understand basic terms and concepts of differentiable manifolds and differentiable maps，and how the differential structures on manifolds can be understood．		
	1．Differentiable manifolds and differentiable maps		
	2．Tangent bundle，inverse function theorem		
	3．Vector fields and flows		
	4．Transversality		
	5．Functions on manifolds		
	6．Morse functions on manifolds		
	7．Morse＇s Lemma，Existence of Morse functions		
	8．Gradient－like vector fields		
	9．Handle decompositions of manifolds		
	10．Examples of handle decompositions		
	11．Homology of manifolds（1）		
	12．Homology of manifolds（2）		
	13．Structures of low－dimensional manifolds（1）		
	14．Structures of low－dimensional manifolds（2）		
	15．h－cobordism theorem（1）		
16．h－cobordism theorem（2）			

